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Abstract

Selected topics that may be of interest for both crystal-
structure and crystal-growth communities are over-
viewed. The growth of protein crystals, along with that
of some other compounds, is one of the topics, and
recent insights into related phenomena are considered
as examples of applications of general principles. The
relationship between crystal growth shape and structure
is reviewed and an attempt to introduce semiquan-
titative characterization of binding for proteins is made.
The concept of kinks for complex structures is brie¯y
discussed. Even at suf®ciently low supersaturations, the
¯uctuation of steps may not be suf®cient to implement
the Gibbs±Thomson law if the kink density is low
enough. Subsurface ordering of liquids and growth of
rough interfaces from melts is discussed. Crystals
growing in microgravity from solution should be more
perfect if they preferentially trap stress-inducing impu-
rities, thus creating an impurity-depleted zone around
themselves. Evidently, such a zone is developed only
around the crystals growing in the absence of convec-
tion. Under terrestrial conditions, the self-puri®ed
depleted zone is destroyed by convection, the crystal
traps more impurity and grows stressed. The stress relief
causes mosaicity. In systems containing stress-inducing
but poorly trapped impurities, the crystals grown in the

absence of convection should be worse than those of
their terrestrial counterparts.

1. Introduction

`There is no crystallography without crystals' ± this was
the basic principle of Academician A. V. Shubnikov
when he was building The Institute of Crystallography in
the 1920s through 1950s in St Petersburg and later in
Moscow. On the other hand, there is no way to grow
crystals without crystallography, physics and chemistry.
Therefore, the triad crystal growth, crystal structure and
crystal properties is the real basis of modern crystal-
lography as is re¯ected in the structure of the Interna-
tional Union of Crystallography.

It is relatively easy to grow low-quality mm±cm size
inorganic and simple organic crystals. However, it took
years to grow a meter long 30 cm in diameter disloca-
tion-free pure silicon crystal from the melt for elec-
tronics, or 50 cm edge-length KH2PO4 (KDP) crystals
from solution to multiply the frequency of powerful
laser radiation, or tens of cm long man-made quartz and
mica crystals. We still use natural calcite for optical
devices. Nobody has grown really perfect high-Tc

superconductor crystals. Growing nm-scale semi-
conductor and magnetic ®lms, quantum wells, wires and
dots did and does involve billions of dollars of effort and
still has a long way to go. It took years to grow the ®rst
blue laser-emitting diode even with the knowledge of
how to grow the red one. Again, not much science is
needed to grow mediocre crystals but high technology
demands high science.

Biology, the science of the 21st century, demands
perfect crystals built of countless biological macro-
molecules. Understanding and control of crystallization
of slightly soluble biominerals, like calcium phosphates,
carbonates, urates, citrates etc. remain the problem
addressed mainly at the qualitative or semiquantitative
level. These salts of numerous crystallographic modi®-
cations form human bones, teeth, kidney and gall stones,
mollusc shells etc.

The obvious importance of crystallography for crystal
growth is to provide a structural background to address
growth phenomena on a molecular level. The Bravais±
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Donnay±Harker law, which allows one to imagine the
crystal habit from crystal structure, is the classical
example. These laws are only qualitatively understood
as well as the periodic bond chain (PBC) and related
connected net approaches (xx2.1, 2.2). However, a
quantitative application of these approaches to complex
structures, inorganic and protein, the in¯uence of crys-
tallization chemistry and temperature leave us with
problems. In the last few decades, diffraction at a surface
together with atomic force microscopy brought us closer
to the point where the molecules, ions and atoms adjust
to a crystal lattice on the way from mother liquid or gas
(xx2.3, 2.4, 2.5). What is still missing here is energetics
and a major part of kinetics on a molecular level.

Diffraction from liquids, unfortunately, has not yet
provided a real spatial and temporal picture of the
behavior of liquids, especially with respect to crystal-
lization. However, we are now pretty sure that smectic-
like liquid ordering near a crystal surface exists (x2.5)
and makes it possible to guess what its kinetic conse-
quences are if we make use not only of static but also of
dynamic structure factors (xx3, 4). In this case, however,
there is still a problem to ascribe each atom, at each
moment, to either a liquid or a crystal phase.

Another area where diffraction crystallography and
crystal growth are traditional mutual bene®ciaries is
crystal characterization (x5), revealing (both in situ and
ex situ) dislocations and mosaicity, stacking faults,
sectorial and striational inhomogeneities induced by
point defects appear during the growth processes. It is
not possible to reveal the microscopic nature of stress
centers (x5.2) inducing internal stress and mosaicity of
biocrystals by diffraction techniques. However, a crystal
structure solved to a high resolution in combination with
biochemical puri®cation methods might be useful to
understand the crystal growth processes preventing high
crystal quality (x5.2). In solving this problem, crystal-
lography of possible molecular conformations, that of
intermolecular binding, including binding with relevant
impurities, will be useful for crystal-growth science and
protocols. Twinning, especially in II±VI semiconductors,
is one of the thus far insuf®ciently addressed problems
of crystal growth where in situ diffraction studies, like
earlier work on in situ X-ray topography, may result in
understanding the essence of twinning on the micro-
scopic and not only on the phenomenological level. Of
course, the problems discussed in this overview re¯ect
only the author's preferences and opinions and do not
cover numerous interesting subjects and achievements.

2. Faceted growth

2.1. Crystal habit ± background and challenges

The correspondence between crystal structure and
growth shape is probably the major application of
structural crystallography and structural crystal chem-

istry to faceted crystal growth. First came the Bravais
idea that the crystal habit should include the crystal-
lographically simplest faces within which the surface
density is the highest. Donnay and Harker noted that for
calculation of the actual atomic densities in the planes
the conventional interplanar spacings are not suf®cient.
One should take into account the screw symmetry axes
and glide re¯ection planes parallel to the faces under
consideration. E.g., if a screw axis of the nth order is
normal to a face, the actual particular density is n times
lower than that corresponding to the full lattice period
along this axis. In other words, for, say, a (0001) face of
quartz, the density of SiO2 molecules in each actual
lattice layer is n � 3 times lower. Correspondingly, the
growth rate is expected to be 3 times higher. Therefore,
the basal (0001) face does not show up in the growth
shape, as one might predict just from lattice spacing.
This text-book example demonstrates the success of the
geometrical approach to predict crystal habit.

Introduction of the periodic bond chain (PBC)
concept (Hartman, 1973) provided a very ef®cient tool
to analyze and predict crystal habit by introducing bond
strengths rather that only atomic densities in crystal
planes. Later, the PBC concept naturally developed into
the connected net consideration (Bennema, 1993).

The simple physical basis of the PBC approach is as
follows. A face grows only by generation and propaga-
tion of steps because only the steps contain the kink
position in which a building unit possesses exactly half of
the bonds with crystal neighbors, as compared to the
same unit in the crystal bulk. Thus, this is the unit in the
kink that has the chemical potential of the crystal, or,
put differently, the addition of a new unit to the kink
does not change the surface energy. The steps are
generated either by two-dimensional (2D) nucleation or
by screw dislocations. This is the most dif®cult and thus
essentially rate-determining process. The step-genera-
tion rates in both of these modes are lower the higher
the free energy of the steps. The faces on which the step
generation rate is lower grow more slowly relative to the
others. For clear geometrical reasons, the slowest
growing faces are typically the largest on a crystal. For
these faces, the unit-cell-thick slice parallel to the face
includes the strongest periodic bond chains. Therefore,
these faces bear the most energy-rich steps because
creation of steps on these faces is associated with
breaking the strongest bonds. However, the face rate
depends not only on the step generation but also on the
step propagation rate. This issue is still ambiguous. The
velocity at which the step propagates along the face is
associated with the usually unknown activation energy
and entropy barriers involved in the attachment of new
species to the lattice at the kink sites and the rate of the
kink generations themselves. The latter is the lowest
for the step orientations parallel to the strongest bond
chains along the face. However, the kink density may be
high enough because the barrier for kink nucleation is

860 CRYSTAL GROWTH AND CRYSTALLOGRAPHY



low ± since cooperative interactions is missing in one-
dimensional objects to which steps belong. Therefore,
correlation between the step rate and strength of the
bonds parallel to the face remains a challenge. To the
zeroth approximation, one may assume, in agreement
with some measurements (see Chernov, 1989, 1993, and
reference therein), that the step rates at similar super-
saturations do not differ dramatically at various faces of
the same crystal unless impurities are involved. Another
unsolved problem associated with the application of the
PBC is the unknown binding energies themselves, with
respect not only to vacuum but especially relative to the
energy that a growth unit acquires moving from the kink
position to the mother solution or melt. The dependence
of crystal habit on temperature comes mainly via
temperature dependence of step propagation kinetics,
i.e. via the activation energy. The 2D nucleation rate is
also a function of temperature and is very sensitive to
supersaturation, which dependencies are only implicitly
within the PBC framework.

Another issue of classical molecular kinetic theory
(Volmer, 1939) that has arisen recently especially in view
of the atomic force microscope (AFM) capabilities is the
kink concept and kink generation in complex structures.
Since molecules are not equivalent within a unit cell,
each molecule cannot be in a kink position: attachment
and detachment of the molecule may change surface
energy. In such lattices into which category the majority
of substances fall, the steps and `classical' Kossel kinks
should be made of the whole unit cell: only detachment
of the whole cell from the kink does not change the
surface energy. The kinks made of the 7 � 7 cells
revealed by scanning tunneling microscopy (STM) on
the Si(111)±7 � 7 reconstructed face is a good example.
This does not mean that the crystal grows by attachment
of whole unit cells or their aggregates (though these
aggregates may be present in solution in typically small
amounts determined by thermodynamic conditions).
What is present at the steps are only partly completed
unit cells; Fig. 1 gives an example different to the
Si(111)±7 � 7. Distribution of the molecular con®gura-
tion should follow the Gibbs law. This distribution via
con®gurational and vibrational entropies makes the

chemical potential of all molecules at these kinks equal
and, at equilibrium, equal to the chemical potential of a
molecule in solution or other mother medium. We come
to the conclusion that the molecular detachment energy
should be averaged over the unit cell for the PBC
analyses. Alternatively, to probe the crystal habit, one
may operate with the energies needed to detach a unit
cell as a whole. Again, it does not mean that the cell is a
real building block actually involved in crystal growth.
In x2.2, we apply, as an example, the PBC concept to the
orthorhombic lysozyme shape.

2.2. PBC geometry and energetics (orthorhombic lyso-
zyme) (Oki et al., 1998)

Application of the PBC needs to quantify various
types of binding (Frey et al., 1991). To determine peri-
odic bond chains that are responsible for the habit of
biocrystals, it is natural to ®rst identify the bonds making
contact between the molecules. In the re®ned structure
of the orthorhombic lysozyme, three types of contacts,
A, B, C, have been found (Oki et al., 1998), making use
of the program by Matsuura et al. (1979) that indicates
the distances between atoms in neighboring molecules
to be less that 4 AÊ (shorter distances might be chosen as
well). The centers of A, B and C contacts on each
molecule were connected with the centers of the
neighboring molecules, as shown in the stereopair in Fig.
2. Red, yellow and blue lines correspond to the A, B and
C contacts, respectively. Each molecule has six contacts
with its neighbors, 2A, 2B and 2C. Correspondingly, each
point in Fig. 2 from which six lines of three different
colors emerge is the center of a molecule. The network
of the strongest bonds obtained that way allows one to
select the crystallographic planes expected on the crystal
habit. The strength of each of the contacts, A, B, C, was
estimated by counting the number of direct bonds
between amino-acid residue atoms, water-mediated and
assumed van der Waals bonds in the contact and
ascribing to these bonds the energies of 12.56, 6.3 and
1.25 kJ molÿ1, respectively, following the estimates
given by Kabash & Sander (1983), Frey et al. (1991) and
Reid et al. (1985). These estimates give for the contacts

Table 1. Bonds and their energies across and within various crystallographic planes of orthorhombic lysozyme crystal
(Oki et al., 1998)

Actual magnitudes of V and E should be doubled for a whole six-faced unit cell.

(hkl)² d(hkl) (AÊ ) Vacross Vwithin

Eacross

(kJ molÿ1)
Ewithin

(kJ molÿ1)

(100) 56.4 2A 2A+4B+4C 587.7 1883.7
(010) 73.7 2C 4A+4B+2C 261.2 2210.2
(001) 30.4 4B+2C 4A+2C 1034.8 1436.6
(011) 28.1 4B+2C 4A+2C 1034.8 1436.6
(101) 26.8 2A+4B+2C 2A+2C 1622.5 848.9
(110) 44.8 2A 2A+4B+4C 596.0 1883.7

² Those planes having negative indices are equivalent to those with all positive indices.
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A, B and C the energies (with respect to vacuum) of
294, 193 and 13 kJ molÿ1, respectively. A straightfor-
ward way to test the importance of a face in a crystal
habit is to determine the total energy of bonds of all
chains running within the one-lattice-spacing-thick slice
parallel to a face under consideration and to compare
the result with the other faces. The number of chains
that cross the planes restricting a unit cell and run on
average parallel to the face under consideration is
usually designated as Vwithin. The number of chains
crossing the unit-cell top and bottom (parallel to the
face) is associated with the detachment energy of the
unit cell and designated as Vacross. The total contact
balance is

Vtotal � Vwithin � Vacross � 4A� 4B� 4C; �1�
since there are 4 molecules in the unit cell. The face
parallel to the strongest network, i.e. corresponding to
the largest Vwithin, is the one with the smallest Vacross. The
result of the contact counting and corresponding ener-
gies, E, is listed in Table 1. The last column allows a
judgment on the face importance in the crystal habit.
These are the bond energies with respect to vacuum,
rather than to the solution. The energies themselves

have been estimated very roughly. We should also take
into account fundamental inaccuracies associated with
the PBC approach discussed above. Therefore, only
major faces of the habit might be found.

Actual orthorhombic lysozyme crystals are faceted by
large prismatic (11Å0) (110) (1884 kJ molÿ1) and smaller
(010) (2177 kJ molÿ1) faces covered by the (01Å i) and
(011) faces of lower Ewithin (1432 kJ molÿ1). The (101)
faces were not observed, in agreement with
850 kcal molÿ1 in Table 1. Discrepancies between Table
1 and the observed habit with respect to the importance
of (110) and (010) faces seem to be within the accuracy
of the approach and the approximations made.

Generally speaking, the energy Vwithin does depend
on the shape of the unit cell(s) chosen for counting the
number of broken contacts. If the face rate is deter-
mined by 2D nucleation, equilibrium shape of the nuclei
should be chosen for the counting rather than the unit
cell. This is an additional PBC simpli®cation used in this
example.

In conclusion, the PBC approach, though very ef®-
cient, should be supported by approaches taking into
account energetics, speci®c growth mechanisms and
kinetics.

Fig. 1. AFM molecular resolution picture of the {011} thaumatin face.
The growth step moves to the right via trangential motion of kinks
up and down. The time difference between (a) and (b) is 2 min, with
a scanning rate of 1 min frameÿ1; (a) was scanned from top to
bottom and (b) from bottom to top. The last molecular row forming
the step is wider and narrower at different step portions showing
that the complete unit cell (8 molecules) is not built at once. The
wider row includes 8 molecules, the narrower row 6 molecules
(Kuznetsov & Malkin, 1997). (c), (d) AFM images of low-kink-
density steps on the (010) face of the orthorhombic lysozyme crystal
moving to the left in the [100] direction. The time interval between
frames is 51 s. The frame size is 385 � 385 nm (Rashkovich et al.,
1998). Courtesy of L. Rashkovich.
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2.3. Kinetics: inorganic vs protein crystals

Application of in situ X-ray topography, Michaelson
laser interferometry (Rashkovich, 1991; Chernov, 1989,
1993) and AFM (DeYoreo et al., 1994, 1997) provided
quantitative data on dislocation activity, kinetics of step
propagation and the two most fundamental parameters
of layerwise growth kinetics, i.e. effective step energy
� � �l=h and step kinetic coef®cient, �st. Here, �l is the
actually measured linear free step energy and h is the
step height. The step rate is related to �st by the rela-
tionship

v � �st!�C ÿ Ce� � �st!Ce�exp���=kT� ÿ 1�; �2�
where C and Ce are the actual and equilibrium
concentrations of solution and ! is speci®c molecular
volume in the crystal. The face rate

V � pv; �3�
where the local vicinal slope p is the (local) step density
times step height, h. In the dislocation-controlled
growth, p is just the slope of dislocation hillock and rises
with supersaturation Typically, p ' 10ÿ3±10ÿ2. There-
fore,

V � p�st!�C ÿ Ce�; �4�
so that p�st is the kinetic coef®cient of the face. In many
cases, p depends on supersaturation which makes
V�C ÿ Ce� dependence nonlinear.

It is now well established that protein and inorganic
crystals grow from solution by the same mechanisms of
step generation by 2D nucleation and screw dislocation
and subsequent step propagation along the face
(Vekilov et al., 1993; Kuznetsov et al., 1995; Land et al.,
1995, 1997; Malkin et al., 1996; Rosenberger et al., 1996;
Chernov & Komatsu, 1995; Chernov, 1997a). The dif-
ference between inorganic and protein crystals comes
from their parameters. Effective free energies, �, of the
step risers at the crystal±solution interface are sum-
marized in Table 2.

Table 3 provides data on kinetic coef®cients and
hillock slopes (for the screw dislocation growth mode).
The supersaturations used are also different: ��=kT �
0.001±0.002 for conventional, 0.1±0.2 for fast growth
technologies of inorganic salts (e.g. KH2PO4 for laser
frequency multiplication) vs ��=kT � 1±5 for protein
crystallization. The purity level of solution reaches 10ÿ5

for fast growth of inorganic salts while the 99% pure
protein solution, i.e. 10ÿ2, is considered as ultrapure.

Absolute ®gures for � (Table 2) of the inorganic salt/
solution interface exceed by two orders of magnitude
those for proteins. However, the energies per one
molecular site, i.e. �!2=3 (where !2=3 is the typical area
for one molecule) are very close. The same scaling is
valid for the Young modulus, E: for inorganics,
E ' 1012 erg cmÿ3 while, for proteins, E ' 1010 erg cmÿ3

(or dyn cmÿ2). However, the stiffness per molecular
contact, E!2=3 ' 103 dyn for both groups of crystals

Table 2. Surface energies of proteins

1 erg cmÿ2 � 10ÿ3 N mÿ1 � 1 mJ mÿ2.

Protein M (kDa) 2R (nm) ! (cm3) � (erg cmÿ2) �!2=3=kT Nucleus type References

Insulin 7.3 2.7² 2 � 10ÿ20 0.5² 2.76 2D (a)
Lysozyme 14.3 3.4 3 � 10ÿ20 1.2 1.26,³ 2.3 2D (b), (c)
Pumpkin globulin 112 5±6 1.5 � 10ÿ19 6.1 � 10ÿ2 0.43 3D (d)
Apoferritin, ferritin 443 11±12 1.8 � 10ÿ18 2.7 � 10ÿ2 1.0 3D (d)
STMV 1500 16±17 3.5 � 10ÿ18 1.8 � 10ÿ2 1.0 3D (d)
Thaumatin 22 4 6.5 � 10ÿ20 0.4 1.6 2D (e)
Canavalin 147 9±4 4.1 � 10ÿ19 0.6 8.3 2D (f)
Catalase 250 4.2 7.2 � 10ÿ20 0.32 4.3 2D (g)

² Found from ! assuming dimers as growth units. ³ The surface per molecule on the h110i steps riser on the (110) face,
28 � 14 AÊ 2 � 4 � 10ÿ18 m2, was used instead of !2=3 � 10ÿ17 m2. References: (a) Fiddis et al. (1979); (b) Chernov et al. (1995); (c) Durbin &
Feher (1986); (d) Malkin & McPherson, (1994); (e) Malkin et al. (1996); ( f ) Land et al. (1995); (g) Malkin et al. (1998).

Fig. 2. Stereographic pair showing periodic bond chains connecting A
(red), B (yellow) and C (blue) intermolecular contacts via the
centers of the contacting molecules. These centers are the points at
which three lines of each color meet. Each molecule has 6 neighbors,
i.e. 2A, 2B, 2C contacts (Oki et al., 1998).
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(Chernov & Komatsu, 1995; Chernov, 1997a,b). Thus,
the difference comes, in the ®rst place, from the larger
size of protein molecules while the bond strength is of
the same order of magnitude. Indeed, the independently
estimated contact strength for orthorhombic lysozyme
(x2.2) of 293±125 kJ molÿ1 with respect to vacuum is of
the same class as e.g. metal and inorganic salt evapora-
tion, 167±335 kJ molÿ1.

What makes a difference in growth kinetics, namely
the much slower growth of protein crystals, is the rate of
incorporation of molecules into the lattice, i.e. the step
kinetic coef®cient (Table 3). This difference also comes
from the larger size of protein molecules via the high
rotational entropic barrier for crystallization. Indeed,
the probability that an asymmetric molecule arrives at a
kink site in a proper orientation with respect to the
lattice may be approximated by the steric angle within
which a director of the molecule should remain for
correct docking. This angle is the ratio between the
squared radius of intermolecular forces, say 2±3 AÊ , to
the squared effective molecular radius, say 20±30 AÊ . The
ratio of these squares is 10ÿ2, which is a good proportion
of the difference in the incorporation rate, i.e. in the
kinetic coef®cient, �st (Table 3).

The dramatically higher supersaturations needed to
grow protein compared to inorganic crystals suggest
another essential difference in growth mechanism. It is
known that the inverse supersaturation, kT=��, is a
measure of relative excess of the incoming Brownian
molecular ¯ux to the kink sites over the opposite,
outcoming, ¯ux. For protein crystallization, kT=�� ' 1
to 0.2 are typical. Thus, there is essentially no or only
weak outcoming ¯ux and therefore selection of species
by the lattice via attachment of these species to the kink
and preferential detachment of those of the wrong
type (impurity or irregular species) or orientation. For
comparison, during industrial silicon growth from the
melt, kT=�� ' 105; for solution growth at 2% super-
saturation, kT=�� � 50. We are therefore forced to
conclude that selection of molecules possessing the right

conformation, orientation and binding to continue a
perfect lattice does not occur via the trial-and-error
process typical of inorganics. Selection in protein growth
occurs at the pre-kink level probably controlled by the
tails of the Debye screened electrostatic potentials of
the molecule, kink and surface sites. The latter may be
important if adsorbed molecules are trapped by a
preceeding step. Though these tail interaction energies
do not exceed kT, they are able to perform a good
selection as can be judged from the rocking-curve widths
of tens of seconds and even less. Protein crystal
perfection is discussed in x5.2.

2.4. Step con®gurations

Theory typically assumes that kink density is high at
a step since this is a one-dimensional object without
cooperative interaction and thus with intensive ¯uctua-
tions. However, at a high kink energy=kT ratio, the
density of kinks may be very low (compared to the
lattice sites) so that the step is straight and does not
meander. This happens e.g. for silicon at low tempera-
ture (Voronkov, 1973). AFM images of the steps parallel
to the [001] direction on the (010) faces of orthorhombic
lysozyme and the (011) face of thaumatin are shown
in Fig. 1(c), (d). The average interkink distance for
lysozyme is 4.5 � 10ÿ3 nmÿ1 (Rashkovich et al., 1998).
Similar straight steps have been observed for calcite
(DeYoreo, 1998). Under these conditions, the kinks
appear through growth-induced one-dimensional
nucleation only (Voronkov, 1973; Chernov, 1998a,b). In
other words, from observations, the kink pairs do not
appear via detachment of a unit cell (or part of it) from
the straight step. Only one-dimensional growth nuclea-
tion occurs. Therefore, under practical growth condi-
tions, kink nucleation, spreading along the step and
annihilation occur at a rate exceeding the cell detach-
ment rate so that equilibrium ¯uctuations are unable to
develop. This may affect the action of the Gibbs±
Thomson law for propagation of steps that are straight

Table 3. Kinetic coef®cients �st of steps and vicinal slopes p

Substance Face M (Da) �st (cm sÿ1) p p�st (cm sÿ1) References

ADP, KDP, DKDP, NH4H2PO4,
KH2PO4

(100) (5±12) � 10ÿ2 3 � 10ÿ4±8 � 10ÿ3 10ÿ4±10ÿ3 (a), (b)

ADP (101) 0.4 10ÿ4±5 � 10ÿ3 4 � 10ÿ5±5 � 10ÿ3 (a), (b)
BaNO3 (111) 1.3 � 10ÿ2 (3±15) � 10ÿ4 4 � 10ÿ6±2 � 10ÿ5 (a), (b)
KAl(SO4)2 � 12H2O alums (111) 8 � 10ÿ2 (0.4±3.5) � 10ÿ3 3 � 10ÿ5±3 � 10ÿ4 (a), (b)
Y3Fe5O12 (110), (211) (0.3±3) � 10ÿ2 (0.4±1) � 10ÿ3 (a), (b)
(YSm)3(FeGa)5O12 (111) 1.4 � 10ÿ2 10ÿ2 (a), (b)
(EuYb)3Fe5O12 (111) (0.1±3) � 10ÿ3 (a), (b)
Lysozyme (101) 14 300 4.6 � 10ÿ5 (1.1±1.5) � 10ÿ2 6 � 10ÿ7 (c)
Canavalin 147 000 9 � 10ÿ4 9 � 10ÿ3 9 � 10ÿ6 (d),(e)
Thaumatin 22 000 2 � 10ÿ4 2D nucleation ( f )
Catalase 25 000 3.2 � 10ÿ5 2D nucleation (g)

References: (a) Chernov (1992); (b)Vekilov et al. (1992); (c) Vekilov et al. (1993); (d) Kuznetsov et al. (1995); (e) Land et al. (1997); ( f ) Malkin et
al. (1996); (g) Malkin et al. (1998).
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and suf®ciently short, i.e. containing only a few kinks.
Let us consider a square-shaped island surrounded by
such a kink-free step. Let the square side length, l, be
comparable with the equilibrium length, !�=��. The
Gibbs±Thomson dependence of the supersaturation
which drives the expansion of the small square island is

��0 � ��ÿ !�=l: �5�
However, the kink pairs (one-dimensional nuclei)
appear on the island edges at any place by random
attachments and detachments of species. These events
and, thus, the one-dimensional nucleation probability do
not depend on the step length because the new-born
kinks `do not know' about the corners, since the mol-
ecular interaction potential scale is small compared to l.
Therefore, the propagation rate of the short step under
these conditions will not depend on its length, i.e. the
rate will not obey the law given by (2) with �� replaced
by ��0 from (5). Such `violation' of the Gibbs±Thomson
law by kinetics may happen only if a kink split from one
of the step ends is unable to reach the opposite end. In
other words, the ¯uctuation of the step shape at which
the Gibbs±Thomson law operates is missing at suf®-
ciently high supersaturation.

2.5. Atomic structure of interfaces

STM, AFM and X-ray diffraction techniques in recent
years have helped to answer in some cases a long-
standing question: what are the actual species that form
the last lattice layer exposed to the mother liquor or the
crystal±vacuum interface? This question is not trivial for
all complex lattices whose structure, within a one-lattice-
spacing-thick layer, includes several different molecular
layers parallel to the major faces. The simplest example
is A and B faces of III±V or II±VI semiconductors. Low-
energy electron diffraction (LEED) and re¯ection high-
energy electron diffraction (RHEED) have been used
for some time. At the crystal±solution interface, grazing-
angle incidence diffraction and crystal truncation-rod
techniques were used (Robinson, 1986; Feidenhans'l,
1989; Gidalevitz, Feidenhans'l, Smilgies & Leiserowitz,
1997; De Vries et al., 1998).

Solution of the problem is important in order to
construct a molecular picture of growth and to be able to
judge the impurity, solute and solvent adsorption on
these faces. Amino acid �-glycine and �-alanine crystals
are used as examples (Gidalevitz, Feidenhans'l &
Leiserowitz, 1997). In the former, there is a choice
between the (010) surfaces terminated by either the CH2

groups or those exposing COÿ2 and NH�3 groups to
solution. Within the crystal, the CH2-exposing layers are
van der Waals bonded while the layers exposing COÿ2
and NH�3 groups are bonded by the corresponding
hydrogen bonds. The intensity of diffuse grazing-angle
X-ray scattering in the vicinity of Bragg peaks and
between the truncation rods was used. It was found that

the more hydrophobic CH2 groups are actually exposed
both to the air, when the cleavage surface was investi-
gated, and to aqueous solution when these (010)
surfaces grew or dissolved. The preferential cleavage
through van der Waals contacts rather than through the
stronger hydrogen bonding is quite natural. The expo-
sure of hydrophobic CH2 groups rather than hydrophilic
carboxyl and amino groups to solution suggests that the
solvation energy gain is smaller than the gain due to
crystallization. Knowledge of the actual atomic structure
of the interface explains why (S)-methionine chose the
(01Å0) face of �-glycine to be preferably adsorbed ± it
makes hydrogen bonds, poisons the face and decreases
the growth rate.

The similar problem of lattice termination was solved
by the same truncation-rod-intensity analysis of the
dipyramidal {101} faces of KH2PO4, which may be
terminated by either K� or H2POÿ4 groups (De Vries et
al., 1998). It was shown that K� ions are sitting on the
{101} terraces explaining why cations (e.g. Cr3�, Fe3�,
Al3�) do not in¯uence the bipyramidal faces while they
can decrease the rate of the prismatic {010} face build up
of alternating positive and negative ions.

3. Non-faceted growth: disordered surfaces

Introduction of binding energies into the geometric
approach means that the in¯uence of temperature on
the growth mode can be taken into account. Indeed, the
dimensionless ratio 2"=kT measures in kT units the
energy 2" needed to create a step (per unit site), i.e. the
energy " of a bond `dangling' mainly `parallel' to the face
on which the step separates the completed and non-
assigned portions of the next layer. The smaller "=kT,
the more intensive is the con®gurational ¯uctuation of
the step and thus the higher its entropy, s, and the lower
is the step free energy, �la � "ÿ Ts, where a is the
length of the unit site along the step and s is the
con®gurational entropy of the step. At a critical "=kT
ratio, �"=kT�c, the step energy vanishes and becomes
negative at higher temperatures, T > Tc, and/or lower
step potential energy ". If the step free energy �l

becomes negative, the system favors maximal elongation
of steps to decrease its total free energy. Such elongation
happens by splitting the surface molecular layer into
microscopic molecular-sized islands so that the step
disappears. In other words, the fully completed lattice
surface layer limited by the step intermixes with the
uncompleted (empty) two-dimensional space on the
opposite side of the step. Ultimately, the surface
becomes rough containing adatoms and their clusters
with the kink-like con®gurations homogeneously
distributed throughout the face. This roughening
concept introduced in the 1940s explains why metals and
other substances possessing low entropy of phase tran-
sition �s < �(1�2)k do not show facets. Indeed, lower
transition entropy means low heat of transition and thus
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low "=kT. Since at the rough surface the step energy is
zero or less, kinks are homogeneously spread over the
surface and cooperative interaction is destroyed by
temperature and the two-dimensional nucleation is not
needed to generate steps and thus kinks. Therefore, the
face growth rate is proportional to the low driving force
for crystallization:

V � �!Ce��=kT � ����=kT: �6�
If the mother liquor is a melt, !Ce ' 1. For growth from
solutions, !Ce is essentially a solubility relative to water-
free crystal and varies from 0.2±0.5 for well soluble to
10ÿ3±10ÿ5 or less for poorly soluble slats, like calcium
phosphates, carbonates and minerals in living nature.

For melt growth, the de®nition (6) of � (cm sÿ1) is
often replaced by the experimentally more convenient
coef®cient �T (cm sÿ1 Kÿ1) connecting the growth rate
and supercooling, �T, at the interface:

V � �T�T �7�
�T � ���s=kT; �8�

where �s is the entropy of fusion. The kinetic coef®cient
� in (6) is slightly (several times rather than orders
of magnitude) smaller than the step kinetic coef®cient
�st in (2) because it essentially presents the rate of
incorporation of species at the kink whose density is
assumed to be high on both steps [equation (2)] and
rough surfaces [equation (6)]. For instance, for Si,
�T ' 20 cm sÿ1 Kÿ1 or, with �s ' 5k, T � 1670 K,
�� � 7 � 103 cm sÿ1. This is about ®ve orders of
magnitude larger than the step kinetic coef®cient for
inorganic solution growth. The reasons are in lower, if at
all present, potential and entropic barriers to crystal-
lization from a simple melt, compared to solution
growth. The difference in growth rates between the
layerwise growing face and a rough step or surface is
even more dramatic.

Since the rough interface possesses a very high kinetic
coef®cient, it needs much lower supercooling or super-
saturation to grow at the same rate as a facet. E.g. for Si,
the (111) face grows at �T ' 0.5 K, while for the rough
interface a �T of only �0.01 K is needed. Because of
the low driving force needed, the rough surface follows
just the melting-point isotherm (or, in general, the
surface at which the temperature and concentration
equilibrium is achieved).

Introducing the roughening concept, we operate with
the critical "=kT ratio, implicitly assuming the `dangling
bond' energy ", i.e. that an atom or a molecule belongs
either to the crystal or to the melt (the lattice liquid
model). This is a very productive method for calcula-
tions and Monte-Carlo simulations. Since the crystal±
liquid surface in this model is strictly localized, the
phases are assumed to be different by interaction ener-
gies only [we ignore the model that assumes spreading of
the interface with respect to energies, keeping the lattice

liquid approximation intact (Bennema, 1996)]. The way
to get rid of the lattice model is to present a liquid as a
combination of density waves using, for approximation,
the same set of reciprocal-lattice vectors as the real
crystal. Making use of this approach, we may consider
simultaneous building of several lattice planes parallel
to the interface under consideration, as is shown in Fig.
3. The basic equation to ®nd the kinetic coef®cient is the
balance of energy dissipation within the transient posi-
tion disordered liquid layer (Mikheev & Chernov, 1991):

�kT=2�P
G

R j jGj2DGn dz � nV��: �9�

Here the dissipation on the left-hand side comes from
diffusion ¯exes jG ordering atoms into the density waves
with the wave vectors G via diffusivities DG. Integration
is over all the transition layer, as is shown in the upper
part of Fig. 3. The number density n of species is
supposed to be equal in the crystal and liquid. To eval-
uate the diffusivities, i.e. typical frequencies corre-
sponding to different density waves, the experimental
correlation between the static and dynamic structure
factors was employed (Cohen et al., 1987). The ®nal
expression for the kinetic coef®cient includes the static
structure factor, the typical frequency is proportional to
the thermal gaseous velocity of the particles of mass m,
�kT=m�1=2. It contains also the factor depending on the

Fig. 3. Density waves in an ordered crystal (left) decrease their
amplitudes owing to continuous disordering at the interface with the
melt (right). The crystallization process means ordering the atoms
by moving them towards their positions in atomic planes, as shown
by arrows in (a). Correspondingly, the amplitude of each density
wave rises, as shown by the bold arrows in (b). Gz is normal to the
face while G is a reciprocal-lattice vector of an arbitrary density
wave. V is the face growth rate, t is time, the coordinate x is normal
to the face. The envelope �G(z ÿ Vt) of the density wave serves as
the order parameter (cf. Mikheev & Chernov, 1991).
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angles between the normal to the interface under
consideration and the major reciprocal-lattice vectors.
There is no potential barrier for crystallization in this
case, contrary to the classical equation and in agreement
with some experimental evidence (Ovsienko &
Al®ntsev, 1980). We thus come to the conclusion that
continuous transition between the lattice and disordered
melt may occur via simultaneous ordering of several
layers within the rough interface spread over several
lattice spacings.

4. Subsurface ordering of liquids

Liquid near a solid wall should be ordered just because
the ®rst atomic liquid layer is attached to the wall and
the next layers inherit part of this ordering. Corre-
spondingly, smectic-like and more general density waves
corresponding to various reciprocal-lattice vector
directions should be induced in the liquid by a crystal
surface (Mikheev & Chernov, 1987). Such ordering has
been con®rmed by X-ray diffraction from liquid gallium
on the (111) diamond surface (Fig. 4) (Huisman et al.,
1997). Another con®rmation comes from measurement
of the force acting on the AFM tip approaching highly
oriented pyrolytic graphite and a mica cleavage surface
(Fig. 5).

Similar subsurface ordering at the interface between a
crystal and its own melt has not been experimentally
reported so far. Therefore, there remains two possi-
bilities for the rough crystal±melt interface. One is the
meandering in time and space of the strictly localized
interface dividing `solid' and `liquid' species according to
the lattice model of a liquid. Another is a real continu-
ous positional disordering associated with the surface-
induced density waves, as demonstrated in Figs. 4 and 5.
This is not a trivial choice since meandering of a loca-
lized interface might be reduced to the similar density
waves. However, the lattice model would not explain the
change in the structure of density waves near different
faces obtained by molecular dynamics simulations
(Bonnisent, 1983).

5. Perfection of crystals

Various optical and X-ray diffraction studies of grown
crystals have always been a major part of crystal
growing. These crystal characterization facilities are
associated with any crystal growth laboratory along
with X-ray and electron micropole analyses of crystal
composition inhomogeneities and other techniques.
These crystallographic tools provide deep diagnostics of
crystal defects attributed to crystal-growth processes.

High-precision composition and ordering analyses of
mixed single-crystalline phases is another area of
structure±growth interrelation. For instance, diffraction
analyses of ¯uorite solid electrolytes allow one to
predict the compositions needed to achieve required

electric conductivity and to control the correspondingly
grown crystals (Simonov, 1992; Grigor'eva et al., 1996;
Zhurova et al., 1996).

5.1. Origin of defects

The origin of defects remains a major issue of crystal-
growth science and technology and is associated with the
linkage of several groups of phenomena as follows.

Surface phenomena like adsorption and subsequent
nonequilibrium trapping of impurities, vacancies, varia-
tions of stoichiometry in II±VI and III±V compounds,
antisite defects in III±V compound semiconductors
grown from molecular beams, vapor, melt or solution
cause defects. If a crystal grows with facets, these defects
typically produce different concentrations in different
growth pyramids, the material of which was formed by
different crystallographic faces. In such crystals, the
point-defect distribution is never the equilibrium one.
Even steps possessing different orientations on the same
face produce material with different amounts of point
defects and vicinal sectoriality appears (Smol'skii et al.,
1984).

Transport phenomena in mother melt or solutions are
responsible for striations induced by convection and

Fig. 4. Electron-density map of liquid Ga on the (111) face of diamond
from X-ray diffraction data (upper panel). The lower panel shows
the model of subsurface ordering of Ga on the left containing
monomer and dimers (connected full circles) (Huisman et al., 1997).
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temperature ¯uctuations. Demand in understanding and
ultimate elimination of these inhomogeneities initiated
extensive studies of heat and mass transport, including
the ones under microgravity conditions. These studies
demonstrated the essential role of Maragoni convec-
tions, under both terrestrial and microgravity conditions.
This convection is known to be driven by temperature
and/or concentration gradients inducing gradients in
surface tension along free liquid surfaces. Variation of
residual gravity direction at a level as low as 10ÿ6 g by
various orientations of a space craft in orbit induce up to
10ÿ1 scale variations of stoichiometry in e.g. CdHgTe
crystals (Gillies et al., 1997). Vibrations on the space
craft, particularly manned ones, also induce crystal
inhomogeneities. So do low-level accelerations when the
space craft alters its orientation, not to mention the
change of the orbit itself. Such extreme sensitivity of the
crystal±melt interface and crystallizing system to trans-
port rate gave rise to efforts aimed at suppressing
convection with a magnetic ®eld (Watring & Lehoczky,
1996). A magnetic ®eld is already exploited to produce
silicon crystals.

Instabilities of the growing interface initiated by
random noise, i.e. spatial or temporal deviations of the
original smooth-growing interface and developed at
certain growth condition, especially by liquid ¯ows and
associated temperature ¯uctuations, cause defects. Such
morphological instability happens when, e.g., the mother
melt is undercooled and the growing interface is rough
(Coriell & McFadden, 1993). Morphological instability
happens also on the layerwise growing interface. In this
case, the interface does not grow by spreading of equi-
distant elementary steps of equal (lattice spacing high)
height. Instead, these steps form bunches (Chernov,
1984). These bunches trap point defects in amounts

depending on the bunch speed and height so that the
grown crystals contain striae (Bauser, 1994). This kind of
striation is essentially different from one caused by
changes in conditions external to the surface processes,
like convection-induced temperature and concentration
variations. The step bunching is a result of interaction
between steps via overlapping of diffusion ®elds
surrounding each of the steps because each step is a sink
for solute in solution growth, heat source in melt growth
and sink or source of impurities. Therefore, striations
induced by step bunching is a coupled surface±bulk
transport phenomenon and occurs, like any instability,
even under externally ideally constant temperature and
concentration. The step bunching was found to be
dependent on solution-¯ow direction relative to the step
movement (Chernov et al., 1986; Chernov, 1992; Coriell
et al., 1996, 1998). If both solution and steps are moving
in the same direction, the bunching is dramatically
enhanced. If the ¯ows are antiparallel, the bunching is
strongly suppressed. This ¯ow-dependent effect of
bunching was ®rst discovered in NH4H2PO4 (ADP)
crystals (Chernov et al., 1986) and con®rmed on lyso-
zyme (Vekilov et al., 1996, 1997). In the latter case, the
¯ow induced by solute convection (at a rate of ca
100 mm sÿ1) was suf®cient. The traces of the step
bunches in the crystal were visible by optical contrast if
viewed strictly parallel to the trace plane (Vekilov &
Rosenberger, 1998).

Post-crystallization evolution of defects, stress and
strain distribution is typical of melt growth of, for
example, elementary and compound semiconductors
where point defects and dislocations are mobile.
Therefore, perfection of these materials essentially
depends on the temperature distribution. Inevitable
annealing of the just grown portion of a crystal during
the growth process itself or special annealing results in
stress relaxation and reaction between the trapped
impurities, like metal impurities and vacancies in the
semiconductors remaining plastic in a wide range of
temperature below their melting points. Thermal stress
is induced by inhomogeneous distribution of tempera-
ture in a growing crystal. Therefore, the lower the heat
conductivity the higher are the second derivatives of the
temperature inducing this stress. This stress is relaxed by
creation of dislocations, stacking faults and twins. The
lower the energy needed to create these defects, the
easier is stress relaxation during the growth and the
higher may be the residual stress in the cooled crystal
induced by these defects. In the sequence of Ge, Si,
III±V, II±VI compounds, the thermal conductivity
increases while the stacking-fault energy decreases.
Therefore, growing perfect bulk crystals of elementary
semiconductors is easier than the compound ones,
especially the II±VI compounds. In these crystals,
twinning may occur in the crystal bulk under the
condition of high local stress as well as at favorable
conditions on the growing crystal face.

Fig. 5. Oscillations of the force acting on the AFM tip approaching a
mica surface covered with n-dodecanal (Nakada et al., 1996). Each
force peak corresponds to piercing of a smectic-like liquid layer
ordered by the mica surface at 298 K. At 313 K, the period of
oscillation is doubled.
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5.2. Defects in solution-grown crystals

At least three groups of crystals growing from solu-
tion have attracted much attention in the last few years:
large optically nonlinear crystals for frequency doubling,
mainly KH2PO4 (KDP) and KH2ÿxDxPO2 (DKDP);
proteins and other biological compounds; and biomin-
erals, like Ca phosphates and carbonates, oxalates and
urates. For the ®rst two categories of crystal, perfection
is the major issue. For the KDP group, a high laser
threshold is required in order to use these crystals in
high-intensity laser beams and refractive-index homo-
geneity to reach phase matching for frequency multi-
plication (Bespalov et al., 1987; DeYoreo et al., 1995;
Zaitseva et al., 1997). Perfection of biocrystals is needed
to reach high resolution in revealing the spatial structure
and functions of the biomolecules of which these crystals
are built. Striation and mosaicity seem to be the major
established defects that cause deterioration of crystal
quality. Fig. 6 presents an example of high-precision
X-ray topography revealing mutual rotation between
neighboring striation layers in KDP crystals. The rota-
tion amplitude is ca 10ÿ6 rad, i.e. less than a second
angle range (Smol'sky et al., 1996; Voloshin et al., 1996,
1998). These crystals have been grown in the Lawrence
Livermore Laboratory making use of reagents with a
level of impurities less than 10ÿ5. On the other hand, it is
well known that speci®c impurities induce splitting,
mosaicity and lattice rotation in numerous crystals
grown from solution (Lemmlein, 1973; Punin, 1981,
1983, 1994; Kuzmina et al., 1987; Punin & Gorskaya,
1992; Punin & Ivanova, 1993; Shtukenberg et al., 1993).
These phenomena may be understood bearing in mind

that a point defect in a crystal lattice is a source of
internal stress and may be considered as an elementary
stress center (Chernov, 1998b).

Recent experiments showed that a covalently bound
lysozyme dimer is the important impurity deteriorating
crystal quality. These dimers are present at ca 0.5% in
solution (Carter et al., 1998). The distribution coef®-
cient, K, of an impurity, e.g. of these dimers, at the
growing interface may be introduced as

K � �niS=npS�=�niL=npL�; �10�
where n is the number densities of regular protein (p) or
impurity (i) species in the crystalline solid (S) and liquid
(L) phases. In space, the impurity distribution around a
crystal viewed as a sphere of radius R obeys the Laplace
diffusion equation with the boundary condition

Di@niL=@r � �niS ÿ niL�V
� �K�npS=npL� ÿ 1�VniL

� �iniL: �11�
Here, Di is the diffusivity of impurity, V is the crystal
growth rate and @=@r is the derivative operator normal
to the crystal surface. Solution of the diffusion problem
gives the experimentally measured effective distribution
coef®cient:

Keff � �niS=npS�=�niL1=npL1� � K=�1� �iR=Di�: �12�
Opposite to K [equation (10)], Keff is related to the
measurable concentrations far away from the crystal, at
r � 1. If the impurity is preferentially trapped by the
crystal, which is the case with covalent dimers, �i > 0
and Keff < K. This is because a zone depleted with
respect to the impurity exists around the crystal. Taking
for an estimate for the terrestrial convection
assisted growth K � Keff � 9, V � 5� 10ÿ8 cm sÿ1,
nÿ1

pS � ! � 3� 10ÿ20 cmÿ3, npL � 1018 cmÿ3 (lysozyme
concentration of 25 g lÿ1), Di � 7� 10ÿ11 m2 sÿ1 and
R � 3� 10ÿ4 m, one has �i � 1:5� 10ÿ7 m sÿ1 and
�iR=Di ' 0:6. The latter ®gure means that the relative
depletion is ca 60%, i.e. is of the order of magnitude of
the concentration itself. For comparison, depletion with
respect to regular protein molecules is only several
percent. For crystals grown in space, Keff was measured
by dissolving the whole crystal of ®nal radius Rf, i.e. by
averaging (12) over 0<R<Rf . This hKeffi � 2, i.e. 4.5
times lower that on Earth where convection destroys the
depleted zone. This lower concentration of impurity in
the space-grown crystal should be the reason for its
con®rmed higher diffraction quality (Carter et al., 1998).
These data support our hypothesis (Chernov, 1997a,b;
Vekilov & Rosenberger, 1998) that the microgravity-
induced improvement of protein-crystal quality is asso-
ciated with the lower amount of stress-inducing impu-
rities trapped by the crystal. Elimination of this stress
causes mosaicity dislocations and/or cracking. If the
impurity is rejected by the growing crystal so that �i < 0,

Fig. 6. Mutual rotations of lattice layers making striations parallel to
the dipyramidal (101) KDP face measured along two cross sections
(directions 1 and 2) normal to the face and the striation layers
(Smol'sky et al., 1996; Voloshin et al., 1998).
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microgravity would have a negative effect on the crystal
quality.

The mechanism of crystal deterioration by the
trapped impurities is associated with the internal strain
and stress tensor "�lm induced by each of the impurity
species in the crystal lattice (Chernov, 1997a,b). The
strain ®elds of these centers overlap, inducing macro-
scopic stress in the crystal (Khachaturyan, 1983):

"lm � "�lmC: �13�
Here C is the number of regular sites occupied by stress
centers, relative to all regular sites in an ideal lattice.
Equation (13) is equivalent to the thermal expansion
equation, C playing the role of temperature and "�lm
the role of thermal expansion tensor. It can be shown
(Chernov, 1998b) that, if the center concentration in the
neighboring striation layers parallel to the growing face
differ by �C, the mutual lattice rotation, �!, occurs only
around the axes x and y within the striation plane, z � 0:

�!x � ÿ"�yz�C; �!y � "�xz�C;

�!z � �"�yz ÿ "�xy��C � 0: �14�
With �C ' 10ÿ2, i.e. 1% of impurity, and "�lm � 3� 10ÿ2,
as estimated for the given growth conditions, one may
expect lattice rotation �! ' 3 � 10ÿ4 rad ' 100. The
corresponding internal stress is �G" ' 3 kg cmÿ2 �
3 � 105 Pa. Our ®rst attempt to estimate the strength of
monoclinic lysozyme crystals (Holmes et al., 1998) give
0.5 kg cmÿ2 � 0.5 � 105 Pa. If this estimate is correct,
then the strain of 3 � 10ÿ4 cannot cause elastic stress:
the crystal should either acquire mosaicity or crack.
Further investigations of the different proteins, impu-
rities and growth conditions are needed to con®rm or
reject the impurity-induced microgravity effect and
corresponding recommendation on improvement of
crystal quality under terrestrial growth conditions.

6. Conclusions

The relationship between crystal structure and growth
morphology can be described by the PBC approach
though quantitative data on binding energies and
growth conditions should be introduced for more
adequate analyses.

The kink concept for the complex lattices should be
generalized. Fluctuations do not provide suf®cient kink
density on steps and therefore the Gibbs±Thomson
relationship for straight steps may fail even at not very
high supersaturations.

The lattice model of a melt may be replaced by the
density-wave approach to evaluate the growth kinetic
coef®cient. More analysis is needed to determine if
surface roughness is associated with continuous posi-
tional disordering of the species within the crystal±melt
transition layer rather than with ¯uctuations of the sharp
interface. However, X-ray diffraction, AFM data and

molecular dynamic simulation provide more support for
the positional disordering model.

Relating Young moduli and surface energies of
protein crystals to area per molecule rather than per m2

eliminates dramatic differences between ®gures for
these parameters for protein and inorganic crystals.
Nevertheless, orders-of-magnitude differences in the
growth kinetic coef®cient associated with large mol-
ecular size and asymmetry remain. Selection of proper
species occurs on the pre-kink level rather than via trial-
and-error processes that include incorporation into the
lattice, as happens with inorganics.

Protein-crystal perfection is essentially determined by
impurities inducing internal stress. The higher quality of
crystals grown in microgravity seems to be associated
with lower amounts of these impurities, like covalently
bound dimers in tetragonal lysozyme. These preferen-
tially trapped impurities have lower concentration in
solution around crystals growing in microgravity and
thus inside the crystals. In the presence of active impu-
rities repelled by growing crystals, the crystals grown in
space should have more defects and allow for lower
structural resolution.
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